Shortening velocity and myosin heavy- and light-chain isoform mRNA in rabbit arterial smooth muscle cells.
نویسندگان
چکیده
In smooth muscle cells (SMCs) isolated from rabbit carotid, femoral, and saphenous arteries, relative myosin isoform mRNA levels were measured in RT-PCR to test for correlations between myosin isoform expression and unloaded shortening velocity. Unloaded shortening velocity and percent smooth muscle myosin heavy chain 2 (SM2) and myosin light chain 17b (MLC(17b)) mRNA levels were not significantly different in single SMCs isolated from the luminal and adluminal regions of the carotid media. Saphenous artery SMCs shortened significantly faster (P < 0.05) than femoral SMCs and had more SM2 mRNA (P < 0.05) than carotid SMCs and less MLC(17b) mRNA (P < 0.001) and higher tissue levels of SMB mRNA (P < 0.05) than carotid and femoral SMCs. No correlations were found between percent SM2 and percent MLC(17b) mRNA levels and unloaded shortening velocity in SMCs from these arteries. We have previously shown that myosin heavy chain (MHC) SM1/SM2 and SMA/SMB and MLC(17a)/MLC(17b) isoform mRNA levels correlate with protein expression for these isoforms in rabbit smooth muscle tissues. Thus we interpret these results to suggest that 1) SMC myosin isoform expression and unloaded shortening velocity do not vary with distance from the lumen of the carotid artery but do vary in arteries located longitudinally within the arterial tree, 2) MHC SM1/SM2 and/or MLC(17a)/MLC(17b) isoform expression does not correlate with unloaded shortening velocity, and 3) intracellular expression of the MHC SM1/SM2 and MLC(17a)/MLC(17b) isoforms is not coregulated.
منابع مشابه
Single rabbit stomach smooth muscle cell myosin heavy chain SMB expression and shortening velocity.
Isolated single smooth muscle cells (SMCs) from different regions of the rabbit stomach were used to determine a possible correlation between unloaded shortening velocity and smooth muscle (SM) myosin heavy chain (MHC) S1 head isoform composition (SMA, no head insert; SMB, with head insert). alpha-Toxin-permeabilized isolated single cells were maximally activated to measure unloaded shortening ...
متن کاملACELL June 47/6
Eddinger, T. J., A. A. Korwek, D. P. Meer, and J. J. Sherwood. Expression of smooth muscle myosin light chain 17 and unloaded shortening in single smooth muscle cells. Am J Physiol Cell Physiol 278: C1133–C1142, 2000.—These experiments were performed to test the hypotheses that myosin light chain 17 (MLC17) a and b isoform expression varies between individual vascular smooth muscle (SM) cells a...
متن کاملExpression of smooth muscle myosin heavy chains and unloaded shortening in single smooth muscle cells.
The functional significance of the variable expression of the smooth muscle myosin heavy chain (SM-MHC) tail isoforms, SM1 and SM2, was examined at the mRNA level (which correlates with the protein level) in individual permeabilized rabbit arterial smooth muscle cells (SMCs). The length of untethered single permeabilized SMCs was monitored during unloaded shortening in response to increased Ca2...
متن کاملChanges in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects.
Whether contractility of bronchial smooth muscle cells (BSMC) from asthmatic subjects is significantly altered has never been validated. We tested the hypothesis that such BSMC show increased contractility. Cells were isolated from endobronchial biopsies. BSMC shortening was measured under an inverted microscope. Statistically significant increases in maximum shortening capacity (Delta L max) a...
متن کاملMolecular mechanics of smooth muscle contractile proteins in airway hyperresponsiveness and asthma.
Airway hyperresponsiveness (AH) is a hallmark of asthma. The dynamics of the airway smooth muscle (SM) contraction, rather than its force-generating capacity, have been postulated to be key features of AH. Two mechanisms were proposed whereby an increased velocity of shortening (Vmax) of the airway SM leads to excessive bronchoconstriction. The first mechanism involves a greater Vmax during the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 282 5 شماره
صفحات -
تاریخ انتشار 2002